分享:L360M 管線鋼管水壓爆破試驗(yàn)開裂分析
通過斷口宏觀和微觀分析、化學(xué)成分分析、力學(xué)性能試驗(yàn)、金相分析等理化性能試驗(yàn),對(duì)L360M 直縫埋弧焊鋼管水壓爆破試驗(yàn)出現(xiàn)縱向開裂和橫向斷裂的原因進(jìn)行了分析.結(jié)果表明:鋼管縱向開裂和橫向斷裂主要是由于管體材料韌性較差,鋼管材料中鐵素體G珠光體帶狀組織嚴(yán)重則是導(dǎo)致其韌性較差的主要原因,而管材中嚴(yán)重的帶狀組織與鋼中錳含量偏高導(dǎo)致錳偏析有關(guān);建議合理控制錳元素含量,還可以通過降低鋼管用板材終軋溫度、增加控冷冷卻速率、微合金化等措施來降低板材的帶狀組織級(jí)別.
關(guān)鍵詞:管線鋼管;水壓爆破試驗(yàn);開裂;韌性;帶狀組織;錳偏析
中圖分類號(hào):TE973.91 文獻(xiàn)標(biāo)志碼:B 文章編號(hào):1001G4012(2017)04G0273G07
收稿日期:2016G04G22
作者簡(jiǎn)介:羅華權(quán)(1983-),男,工程師,碩士,主要從事石油管
材質(zhì)量監(jiān)督檢驗(yàn)及研究工作,luohuaquan@cnpc.com.cn.
焊接鋼管水壓爆破試驗(yàn)是驗(yàn)證鋼管承載能力,判斷到達(dá)設(shè)計(jì)壓力后鋼管安全性是否合格的一項(xiàng)重要試驗(yàn)[1].某 鋼 管 廠 生 產(chǎn) 的 規(guī) 格 為 ?813 mm×30mm 的L360M 直縫埋弧焊接鋼管,在水壓爆破試驗(yàn)后出現(xiàn)了縱向開裂和橫向斷裂的情況(一般只縱向開裂),起裂位置位于管體.通過斷口宏觀形貌分析,初步判斷失效是由鋼管材料韌性較差造成的。
爆裂管材料采用的是管線鋼管常用材料 L360M,采用“JCOE”成型方式,即直縫埋弧焊接.該成型方式主要過程為采用多軸控制的智能化液壓成型設(shè)備,按照鋼管的曲率,對(duì)鋼板的兩個(gè)邊同時(shí)進(jìn)行彎曲,實(shí)現(xiàn)鋼板的“J”成型,經(jīng)過“J”成型的鋼板快速橫向送進(jìn)給至指定位置,從另一端開始對(duì)未成型的鋼板進(jìn)行多步逐次彎曲,實(shí)現(xiàn)鋼板后半部分的 “C”成型;最后對(duì)“C”型管環(huán)的下部進(jìn)行一次彎曲,將彎邊后的鋼板壓制成 O 型管坯,進(jìn)入下一道焊接工序.其主要加工工序包括銑邊、預(yù)彎邊、成型、預(yù)焊、內(nèi)外焊、無(wú)損探傷、補(bǔ)焊、機(jī)械擴(kuò)徑、水壓試驗(yàn)、管端倒棱、無(wú)損探傷、外觀及幾何尺寸檢查等。
1 理化檢驗(yàn)
1.1 斷口宏觀分析
鋼 管 縱 向 斷 口 和 橫 向 斷 口 宏 觀 形 貌 見圖1(a)~(b),可見斷口表面呈現(xiàn)帶有金屬光澤的
晶粒狀,有明顯的人字紋,斷口面較為平直,為典型的脆性斷口[2].根據(jù)整個(gè)橫斷面人字紋尖端所指的方向,斷裂源為縱向裂紋的末端,即鋼管的膨脹起爆點(diǎn),見圖1(c).
1.2 化學(xué)成分分析
按 照 ASTM A751-14a[3] 要 求,采 用 ARL4460直讀光譜儀對(duì)管體化學(xué)成分進(jìn)行分析.結(jié)果
如 表 1 所 示,可 見 除 錳 元 素 含 量 稍 高 于 GB/T9711-2011«石油天然氣工業(yè) 管線 輸 送 系 統(tǒng) 用 鋼管»[4]技術(shù)要求外,其余元素含量均符合標(biāo)準(zhǔn)技術(shù)要求.GB/T9711-2011還指出根據(jù)碳含量比規(guī)定值的減少量,可以允許錳含量有適當(dāng)提高。
1.3 力學(xué)性能試驗(yàn)
1.3.1 拉伸試驗(yàn)
在距焊縫180°管體位置和焊接接頭位置取樣,進(jìn)行管 體 和 焊 接 接 頭 拉 伸 試 驗(yàn),試 驗(yàn) 按 照 ASTMA370-14[5]進(jìn)行.拉伸試驗(yàn)結(jié)果見表2,可見鋼管的各項(xiàng)力學(xué)性能均符合 GB/T9711-2011技術(shù)要求。
1.3.2 彎曲試驗(yàn)
在焊接接頭位置取2個(gè)試樣,進(jìn)行焊縫導(dǎo)向彎曲試驗(yàn),試驗(yàn)按照 ASTM A370-14[5]進(jìn)行,試樣尺寸為400mm×38mm×30mm(長(zhǎng)×寬×厚),兩個(gè)試樣一個(gè)面彎,一個(gè)背彎,分別彎曲180°.結(jié)果兩個(gè)試樣均未出現(xiàn)裂紋,試驗(yàn)結(jié)果符合 GB/T9711-2011技術(shù)要求。
1.3.3 沖擊試驗(yàn)
在距離焊縫90°管體、焊縫、熱影響區(qū)?。辰M沖擊試樣,每組試樣各3個(gè),進(jìn)行夏比沖擊試驗(yàn),試驗(yàn)按照 ASTM A370-14進(jìn)行.由表3可見,各位置試樣的沖擊性能也均符合 GB/T9711-2011技術(shù)要求。
從表3可以看出,管體橫向試樣在0℃的夏比沖擊吸收能量雖然滿足標(biāo)準(zhǔn)技術(shù)要求,但是余量不是很大,切斷面率最小為60%,平均值為68%,可見剪切斷面率也不高.0℃時(shí),通常同鋼級(jí)管體橫向試樣的夏比沖擊吸收能量平均值一般都在100J以上.管體縱向試樣的夏比沖擊吸收能量單個(gè)最小值為80J,平均值為102J,較橫向值高,但剪切斷面率最小值為65%,平均值為70%,也不是太高.鋼管的韌性一般由夏比沖擊吸收能量結(jié)合剪切斷面率來評(píng)價(jià),不能簡(jiǎn)單地以夏比沖擊吸收能量的高低來評(píng)價(jià)材料的韌性,
因?yàn)楣芫€鋼材料在受到?jīng)_擊載荷時(shí),其沖擊吸收能由裂紋形成能和裂紋擴(kuò)展能組成,而其中裂紋擴(kuò)展能對(duì)材料的韌性起決定作用,剪切斷面率正好反映了裂紋擴(kuò)展能在沖擊吸收總能量中所占的比例.
1.3.4 落錘撕裂試驗(yàn)
在距 離 焊 縫 90°管 體 取 305 mm×76 mm×30mm(長(zhǎng)×寬×厚)的3組試樣,每組試樣2個(gè),分別 在 20,0,-20℃ 進(jìn) 行 落 錘 撕 裂 試 驗(yàn),試 驗(yàn) 按 照SY/T6476-2013點(diǎn)硬度均符合 GB/T9711-2011技術(shù)要求.點(diǎn)硬度均符合 GB/T9711-2011技術(shù)要求。
1.3.5 硬度試驗(yàn)
分別在距離焊縫90°管體和焊接接頭位置取樣,進(jìn)行硬度試驗(yàn),具體測(cè)試位置見圖2~3,按照 ASTME384-11e1[7]進(jìn)行.試驗(yàn)結(jié)果見表5,可見所有測(cè)試。
1.4 金相分析
在鋼 管 管 體 上 取 樣,進(jìn) 行 金 相 分 析,使 用MEF4M 金相 顯 微 鏡 及 圖 像 分 析 系 統(tǒng),試 驗(yàn) 按 照ASTM E3-11,ASTM E45-13,ASTM E112-13,GB/T 13299-1991 進(jìn) 行,金 相 分 析 結(jié) 果見表6.在生產(chǎn)檢驗(yàn)中,一般采用對(duì)帶狀組織進(jìn)行評(píng)級(jí)的方法來表征帶狀組織的嚴(yán)重程度.試驗(yàn)結(jié)果表明,該鋼管的帶狀組織級(jí)別為 4.0 級(jí),帶狀級(jí)別較高,帶狀程度較嚴(yán)重。
1.5 斷口微觀分析
根據(jù)鋼管斷口宏觀形貌,可以看出鋼管起裂于管體爆破口位置,裂紋源宏觀形貌如圖6(a)所示.
裂紋源源區(qū)微觀形貌如圖6(b)所示,裂紋源擴(kuò)展區(qū)形貌如圖6(c)所示.從裂紋源源區(qū)和擴(kuò)展區(qū)微觀形貌可以看出,鋼管斷裂為韌窩+解理復(fù)合型斷裂.
圖6 裂紋源源區(qū)和擴(kuò)展區(qū)斷口形貌
Fig.6 Morphologyoffractureofthecracksourceandpropagationareaa macromorphologyofthecracksource bmicromorphologyofthecracksourcearea c micromorphologyofthecrackpropagationarea
在圖7所示管體橫向斷裂坡口邊沿取縱向斷口試樣,編號(hào)為1號(hào),其宏觀形貌如圖8(a)所示.在管體橫向 斷 裂 坡 口 邊 沿 取 橫 向 斷 口 試 樣,編 號(hào) 為2號(hào),其宏觀形貌如圖9(a)所示.通過1號(hào)和2號(hào)試樣的斷口宏觀分析可知,管道的截面為矩形截面,宏觀斷口上的放射狀條紋呈人字花樣,人字紋的頭部指向斷裂源.從裂紋源源區(qū)和擴(kuò)展區(qū)的微觀形貌可以看出,源區(qū)和擴(kuò)展區(qū)都有一定程度的解理形貌.從1號(hào)和2號(hào)試樣斷口的微觀形貌來看,有大量高密度的、短而彎曲的撕裂棱線條,為較為典型的解理斷口,如圖8(b)和圖9(b)
所示.解理斷口一般呈脆性斷裂特征,塑性變形很少,宏觀上為結(jié)晶狀.低溫、高應(yīng)變速率、粗大晶粒和應(yīng)力集中(如有缺口時(shí))均有利于解理的發(fā)生,裂紋一經(jīng)形成,便會(huì)快速傳播,因?yàn)椴荒芸焖僦沽?往往會(huì)造成災(zāi)難性的破壞.
有一定程度的解理形貌.從1號(hào)和2號(hào)試樣斷口的微觀形貌來看,有大量高密度的、短而彎曲的撕裂棱線條,為較為典型的解理斷口,如圖8(b)和圖9(b)所示.解理斷口一般呈脆性斷裂特征,塑性變形很少,宏觀上為結(jié)晶狀.低溫、高應(yīng)變速率、粗大晶粒和應(yīng)力集中(如有缺口時(shí))均有利于解理的發(fā)生,裂紋一經(jīng)形成,便會(huì)快速傳播,因?yàn)椴荒芸焖僦沽?往往會(huì)造成災(zāi)難性的破壞.看出,鋼管管體橫向的夏比沖擊吸收能量平均值為58J,單個(gè)值最小為 49J,略高于標(biāo)準(zhǔn)技術(shù)要求的40J;剪 切 斷 面 率 平 均 值 為 68%,單 個(gè) 值 最 小 為60%,可見剪切斷面率也不高.管體縱向試樣的沖擊功吸收能量較橫向試樣的高一些,最小值為80J,但剪切斷面率最小值為65%,平均值為70%,也不高.落錘撕裂試驗(yàn)結(jié)果表明,鋼管管體0 ℃時(shí)的剪切面積分?jǐn)?shù)為3%,-20 ℃時(shí)為0,表明鋼管的止裂韌性極低,這與夏比沖擊試驗(yàn)結(jié)果一致.掃描電鏡觀察結(jié)果表明,裂紋源區(qū)和擴(kuò)展區(qū)都有一定程度的解理形貌,橫向斷裂坡口邊沿橫向和縱向斷口試樣的微觀形貌均為解理,由此判斷該鋼管管體材料韌性很低,基本屬于脆性斷裂的范疇,這也與夏比沖擊試驗(yàn)和落錘撕裂試驗(yàn)結(jié)果相互印證.上述分析結(jié)果綜合表明:鋼管材料的韌性很差.
該鋼管在23.9MPa靜水壓試驗(yàn)壓力下保壓10min未發(fā)生泄漏,試驗(yàn)結(jié)果符合 GB/T9711-2011技術(shù)要求,繼續(xù)加壓 至 36.3 MPa時(shí),管 體 發(fā) 生 爆 破 失效.從鋼管水壓爆破試驗(yàn)失效的宏觀形貌來看,鋼管縱向斷口位置為非焊縫位置,爆破口起裂部位有明顯的膨脹突出變形,起裂部位壁厚明顯減薄.斷口處壁厚最小值為18.05mm,壁厚減薄量111.95mm.為了對(duì)鋼管變形及爆破過程有一個(gè)清晰的了解,對(duì)鋼管的受力情況進(jìn)行了分析[8].鋼管中的靜水壓力既產(chǎn)生環(huán)向應(yīng)力,也引起軸向應(yīng)力,其縱向截面上的受力如圖10所示,橫向截面上的受力如圖11所示.根據(jù)切向力平衡條件,可得:
有一定程度的解理形貌.從1號(hào)和2號(hào)試樣斷口的微觀形貌來看,有大量高密度的、短而彎曲的撕裂棱線條,為較為典型的解理斷口,如圖8(b)和圖9(b)
所示.解理斷口一般呈脆性斷裂特征,塑性變形很少,宏觀上為結(jié)晶狀.低溫、高應(yīng)變速率、粗大晶粒和應(yīng)力集中(如有缺口時(shí))均有利于解理的發(fā)生,裂紋一經(jīng)形成,便會(huì)快速傳播,因?yàn)椴荒芸焖僦沽?往往會(huì)造成災(zāi)難性的破壞.
2 分析與討論
鋼管管體和焊接接頭的拉伸試驗(yàn)、導(dǎo)向彎曲試驗(yàn)、夏比 沖 擊 試 驗(yàn) 及 硬 度 試 驗(yàn) 結(jié) 果 均 符 合 GB/T9711-2011技術(shù)要求.從夏比沖擊試驗(yàn)結(jié)果可以看出,鋼管管體橫向的夏比沖擊吸收能量平均值為58J,單個(gè)值最小為 49J,略高標(biāo)準(zhǔn)技術(shù)要求的40J;剪 切 斷 面 率 平 均 值 為 68%,單 個(gè) 值 最 小 為60%,可見剪切斷面率也不高.管體縱向試樣的沖擊功吸收能量較橫向試樣的高一些,最小值為80J,但剪切斷面率最小值為65%,平均值為70%,也不高.落錘撕裂試驗(yàn)結(jié)果表明,鋼管管體0 ℃時(shí)的剪切面積分?jǐn)?shù)為3%,-20 ℃時(shí)為0,表明鋼管的止裂韌性極低,這與夏比沖擊試驗(yàn)結(jié)果一致.掃描電鏡觀察結(jié)果表明,裂紋源區(qū)和擴(kuò)展區(qū)都有一定程度的解理形貌,橫向斷裂坡口邊沿橫向和縱向斷口試樣的微觀形貌均為解理,由此判斷該鋼管管體材料韌性很低,基本屬于脆性斷裂的范疇,這也與夏比沖擊試驗(yàn)和落錘撕裂試驗(yàn)結(jié)果相互印證.
上述分析結(jié)果綜合表明:鋼管材料的韌性很差.該鋼管在23.9MPa靜水壓試驗(yàn)壓力下保壓10min未發(fā)生泄漏,試驗(yàn)結(jié)果符合 GB/T9711-2011技術(shù)要求,繼續(xù)加壓 至 36.3 MPa時(shí),管 體 發(fā) 生 爆 破 失效.從鋼管水壓爆破試驗(yàn)失效的宏觀形貌來看,鋼管縱向斷口位置為非焊縫位置,爆破口起裂部位有明顯的膨脹突出變形,起裂部位壁厚明顯減薄.斷口處壁厚最小值為18.05mm,壁厚減薄量為11.95mm.為了對(duì)鋼管變形及爆破過程有一個(gè)清晰的了解,對(duì)鋼管的受力情況進(jìn)行了分析[8].鋼管中的靜水壓力既產(chǎn)生環(huán)向應(yīng)力,也引起軸向應(yīng)力,其縱向截面上的受力。
如圖10所示,橫向截面上的受力如圖11所示.
根據(jù)切向力平衡條件,可得:
式中:σb 為環(huán)向應(yīng)力,MPa;p 為靜水內(nèi)壓力,MPa;d 為管道內(nèi)徑,mm;t為管道壁厚,mm.
根據(jù)軸向力平衡條件,可得:
式中:σa 為軸向應(yīng)力,MPa;D 為管道外徑,mm.則管道軸向應(yīng)力與環(huán)向應(yīng)力的比值為:
因此σb>2σa,即環(huán)向應(yīng)力大于2倍的軸向應(yīng)力,影響承壓的主要因素是環(huán)向應(yīng)力.鋼管水壓試驗(yàn)時(shí),由于環(huán)向應(yīng)力較大,爆破失效時(shí),首先是環(huán)向應(yīng)力達(dá)到爆破應(yīng)力,管道縱向起爆后被撕裂.該鋼管的水壓爆破試驗(yàn)壓力為36.3MPa,壁厚最小值為18.05mm,將其代入式(1)可得:σb=36.3×7532×18.05=757.17 MPa.
此時(shí),σb 大大超過了管體的橫向抗拉強(qiáng)度和焊縫的抗拉強(qiáng)度,因而鋼管縱向起裂.從鋼管斷裂的整體宏觀形貌和斷口分析結(jié)果可知,在鋼管內(nèi)部壓力逐漸增加的情況下,當(dāng)鋼管環(huán)向截面內(nèi)的應(yīng)力超過鋼管的屈服強(qiáng)度后,在鋼管環(huán)向起爆點(diǎn)位置產(chǎn)生塑性變形(從裂紋源位置有一定數(shù)量的韌窩存在可以得出),鋼管壁厚減薄,塑性變形到一定程度后產(chǎn)生細(xì)小裂紋,而裂紋在管道強(qiáng)大的應(yīng)力下迅速擴(kuò)展,管道瞬間縱向爆裂,縱向開裂后迅速脆性斷裂.大量的鋼管靜水壓爆破試驗(yàn)表明,管道塑性變形大的縱向開裂部分(起爆點(diǎn)噘嘴很大的部位一側(cè))有向橫向撕裂的趨勢(shì)(圖12),所以管道縱向迅速斷裂后,在塑性變形大的一側(cè)由縱向脆性斷裂轉(zhuǎn)化為橫向斷裂(在該鋼管爆裂的宏觀形貌中,較為圓滑的過渡角也證實(shí)了 由 縱 向 斷 裂 轉(zhuǎn) 換 為 橫 向 斷 裂 的 過 程,見圖7).材料的塑性和韌性對(duì)裂紋擴(kuò)展存在較大的影響,如果材料的韌性和塑性較差,承受大載荷時(shí),
裂紋尖端局部塑性變形較小,裂紋擴(kuò)展阻力小,就容易失穩(wěn)擴(kuò)展而迅速斷裂[9].如果該鋼管材料的塑性和韌性較高,橫向撕裂長(zhǎng)度可能極小,而失效管道材料韌性較低,管道橫向撕裂后,無(wú)法迅速止裂,最終造成整個(gè)管道橫向也斷裂.
因此,造成 該 管 道 縱 向 開 裂 和 橫 向 斷 裂 的 主要原因是管道材料韌性較差.而影響材料沖擊韌度的因素主 要 有 材 料 的 化 學(xué) 成 分、顯 微 組 織 和 材料本身 內(nèi) 部 的 缺 陷.為 了 進(jìn) 一 步 弄 清 該 L360M級(jí)鋼管韌性 較 差 的 原 因,筆 者 從 以 下 幾 個(gè) 方 面 進(jìn)行了分析.
(1)化學(xué)成分
鋼材的化學(xué)成分是材料韌性影響因素之一,不同的化學(xué)成分,其韌性可能不同.該 L360M 鋼級(jí)材料為低合金鋼,加入了微量的合金元素.由前文的化學(xué)成分分析結(jié)果可知,除錳含量稍高外,其他元素含量均在標(biāo)準(zhǔn)技術(shù)要求范圍內(nèi).錳元素有較強(qiáng)的固溶作用,其作用在于提高管線鋼的強(qiáng)度,比如常見的高強(qiáng)度鋼都為錳鋼.錳元素還可以降低奧氏體→鐵素體(γ→α)相轉(zhuǎn)變溫度,細(xì)化鐵素體晶粒.錳元素還可以起到脫硫作用,防止熱裂,適量的錳可以提高材料韌性,降低鋼的韌G脆轉(zhuǎn)變溫度.但是錳含量過高則會(huì)導(dǎo)致控軋鋼板的中心錳偏析嚴(yán)重[10],熱軋后成為帶狀偏析,形成帶狀組織,而帶狀組織會(huì)降低鋼材的韌性、塑性.因此,從化學(xué)成分來看,管體的錳含量為1.47%,含量稍高,鋼管管體材料中嚴(yán)重的帶狀組織可能與錳偏析有關(guān)。
(2)顯微組織
金相分析結(jié)果表明,鋼管材料顯微組織為多邊形鐵素體+珠光體.材料的帶狀組織評(píng)級(jí)較高,為4.0級(jí),為多邊形鐵素體G珠光體帶狀組織,一般管線鋼標(biāo)準(zhǔn)要求材料的帶狀組織級(jí)別不超過3.0級(jí),所以該材 料 的 帶 狀 組 織 較 為 嚴(yán) 重. 晶 粒 度 被 評(píng) 為8.0級(jí),作為油氣輸送用的常見管線鋼管,其晶粒度級(jí)別基本在10.0級(jí)以上,所以該材料的晶粒尺寸也較為大.鐵素體G珠光體帶狀組織對(duì)材料塑性和韌性有較大影響,其作用機(jī)理如下[11]:鋼坯凝固時(shí)溶質(zhì)元素(碳和其他元素等)發(fā)生偏析而富集在枝間,熱軋加熱時(shí),碳能優(yōu)先達(dá)到均勻,而其他代位原子的均勻化卻很困難,這就使得鋼中各區(qū)域的 Ar3點(diǎn)溫度(鋼材冷卻時(shí)奧氏體開始析出先共析鐵素體的實(shí)際臨界溫度)不一致.
亞共析 鋼 從 終 軋 時(shí) 的 奧 氏 體 態(tài) 冷 卻 時(shí),先 在Ar3點(diǎn)溫度析出先共析鐵素體,當(dāng)冷卻到 Ar1點(diǎn)溫度(鋼材冷卻時(shí)奧氏體開始析出珠光體的實(shí)際臨界溫度)時(shí)才開始形成珠光體.如果在鋼中各處都同時(shí)形成先共析鐵素體,就不會(huì)形成帶狀組織,也就是說各個(gè)區(qū)域的 Ar3 點(diǎn)溫度相同時(shí),就不會(huì)形成帶狀組織.但是實(shí)際上,結(jié)晶時(shí)形成枝晶偏析,熱軋后成為帶狀偏析,枝間部分和枝干部分各元素含量不同,其Ar3點(diǎn)溫度也就不同,所以會(huì)導(dǎo)致先共析鐵素體析出的不同時(shí)性.Ar3點(diǎn)溫度高的帶狀偏析區(qū)優(yōu)先共析鐵素體,Ar3點(diǎn)溫度低的部位后轉(zhuǎn)變,而由于富集碳而形成珠光體,這樣就形成鐵素體G珠光體帶狀組織,也稱為二次帶狀組織或纖維組織帶狀.鐵素體G珠光體帶狀組織往往具有脆性大的特點(diǎn),會(huì)造成鋼材的各向異性,使鋼材的沖擊韌度、塑性和可切削性變差.帶狀組織的嚴(yán)重程度取決于合金元素的枝晶偏析程度、冷卻速率及奧氏體晶粒的大小.因此,很有可能,該材料夏比沖擊吸收能量和剪切斷面率偏低、韌性較差是由嚴(yán)重的鐵素體G珠光體帶狀組織引起的.帶狀組織的特點(diǎn)是有很強(qiáng)的方向性,在變形過程中容易產(chǎn)生應(yīng)力集中.帶狀組織是脆弱的部位,容易萌生裂紋,有利于裂紋的形成和擴(kuò)展.消除和減弱帶狀組織的方法有降低終軋溫度、增加控冷冷卻速率、微合金化等措施.降低終軋溫度,可以提高鋼中的形變能而誘發(fā)先共析鐵素體的形核,減小先共析鐵素體析出的不同時(shí)性;當(dāng)控冷冷卻速率增加后,帶狀組織急劇減弱;合金元素鈮、鈦會(huì)在奧氏體中析出,可以成為先共析鐵素體的形核中心,促進(jìn)先共析鐵素體的均勻形核,從而消除或減弱帶狀組織;上述方法都能減輕帶狀組織程度,需要視具體情況選用。
(3)材料缺陷
鋼管管體中的缺陷包括分層、夾雜、氣孔等.通過觀察,在沖擊試樣斷口、落錘撕裂試樣斷口以及鋼管縱向開裂和橫向斷裂斷口的宏觀形貌中,并未發(fā)現(xiàn)上述缺 陷,鋼 管 材 料 中 的 非 金 屬 夾 雜 物 含 量 也較低
3 結(jié)論及建議
(1)鋼管水壓試驗(yàn)縱向開裂和橫向斷裂主要是由于其材料韌性較差,而材料帶狀組織較為嚴(yán)重為其韌性較差的重要原因之一.鋼管化學(xué)成分中錳含量稍高,易導(dǎo)致錳偏析,錳偏析可能是鋼管材料鐵素體G珠光體帶狀組織產(chǎn)生的原因之一,因此鋼中錳含量需要控制在合理的范圍內(nèi)。
(2)為了降低 L360M 鋼級(jí)材料的帶狀組織級(jí)別,減小其晶粒尺寸,可以采取合理控制錳元素含量、降低鋼管用板材終軋溫度、增加控冷冷卻速率、微合金化等措施。
(來源材料測(cè)試網(wǎng))