分享:沉淀硬化不銹鋼彈簧脆性斷裂原因
為提高產(chǎn)品的耐腐蝕性能,航空航天、船舶、核工業(yè)、汽車、機(jī)械等行業(yè)廣泛應(yīng)用不銹鋼材料。隨著機(jī)械工業(yè)的發(fā)展,普通的不銹鋼已不能滿足強(qiáng)度需求,超高強(qiáng)度馬氏體沉淀硬化不銹鋼得到了研發(fā)和應(yīng)用。一般采用表面鈍化的方式對強(qiáng)度較高的不銹鋼進(jìn)行腐蝕防護(hù)處理。經(jīng)鈍化后,不銹鋼表面生成復(fù)合膜,膜層至少有內(nèi)、外兩層,內(nèi)層富含Cr、Mo或Ni等元素,外層為富Fe層。表面鈍化工藝類型較多,采用不同鈍化工藝得到的鈍化膜結(jié)構(gòu)和成分有所不同[1]。
超高強(qiáng)度馬氏體不銹鋼的強(qiáng)度較高,對氫脆敏感,材料的強(qiáng)度越高,氫脆敏感性越大[2-3],鋼的氫脆敏感性不僅與強(qiáng)度有關(guān),還與組織中的第二相、晶粒度、微觀結(jié)構(gòu)缺陷、合金元素等有關(guān)[4-5]。復(fù)合添加Nb、Ti、Cu等元素,并配合適當(dāng)?shù)臒崽幚?可使材料析出納米相,顯著提高材料的抗氫脆能力[6]。氫元素的擴(kuò)散系數(shù)較小,材料的氫脆敏感性也較低[7],當(dāng)材料的氫元素?cái)U(kuò)散系數(shù)較大時(shí),高強(qiáng)度不銹鋼的零斷面收縮率對應(yīng)的臨界氫元素含量可低至0.000 000 8%(質(zhì)量分?jǐn)?shù))[8]。晶界、位錯(cuò)、晶界上的第二相、板條束尺寸大的組織單元及應(yīng)力集中區(qū)域等都易導(dǎo)致氫元素富集[9-11],并引發(fā)氫致開裂。鋼的氫脆敏感性還與材料脆性、零部件殘余應(yīng)力等因素有關(guān)[12]。
某超高強(qiáng)度沉淀硬化不銹鋼彈簧在電鍍過程中發(fā)生氫脆斷裂。筆者采用一系列理化檢驗(yàn)方法分析了彈簧斷裂的原因,以避免該類問題再次發(fā)生。
1. 理化檢驗(yàn)
1.1 宏觀觀察
彈簧斷口的宏觀形貌如圖1所示。由圖1可知:斷口由兩個(gè)明顯不同的區(qū)域組成,Ⅰ區(qū)斷口粗糙,目視可見許多反光的小刻面,有收斂于彈簧內(nèi)徑表面的裂紋擴(kuò)展棱線,呈線源特征,彈簧起裂區(qū)表面無劃傷等機(jī)械損傷;Ⅱ區(qū)斷口顏色發(fā)灰,可見源自Ⅰ區(qū)斷口的裂紋擴(kuò)展棱線,斷口邊緣呈剪切唇特征。
1.2 氫元素含量測試
選取同批次原材料進(jìn)行氫元素含量測試,試樣尺寸(直徑×長度,下同)為4 mm×5 mm。將原材料進(jìn)行鈍化處理,并對鈍化后的試樣進(jìn)行氫元素含量測試,鈍化后試樣尺寸分別為5 mm×5 mm(未去除表層)和4 mm×5 mm(去除表層)。接著對試樣進(jìn)行除氫處理,并對除氫后的試樣進(jìn)行氫元素含量測試,除氫后試樣的尺寸分別為5 mm×5 mm(未去除表層)和4 mm×5 mm(去除表層)。鈍化和除氫處理方法如表1所示,氫元素含量測試結(jié)果如表2所示。由表2可知:原材料中未檢測出氫元素,鈍化后和除氫后試樣中均可檢測到一定含量的氫元素,除氫后氫元素含量有所降低。
處理方法 | 條件 |
---|---|
鈍化 | 20%~25%(體積分?jǐn)?shù))HNO3+2%~3%(質(zhì)量分?jǐn)?shù))Na2Cr2O7·2H2O,25 min |
除氫 | 鈍化2 h后除氫,190 ℃,24 h |
項(xiàng)目 | 試樣尺寸/(mm×mm) | 氫元素質(zhì)量分?jǐn)?shù)/% |
---|---|---|
原材料實(shí)測值 | 4×5 | - |
鈍化后實(shí)測值 | 5×5 | 0.000 047 |
4×5 | 0.000 040 | |
除氫后實(shí)測值 | 5×5 | 0.000 036 |
4×5 | 0.000 021 |
1.3 金相檢驗(yàn)
在斷裂彈簧斷口附近截面上取金相試樣,采用光學(xué)顯微鏡對試樣進(jìn)行觀察,結(jié)果如圖2所示。由圖2可知:彈簧無明顯脫碳現(xiàn)象,無過熱、過燒組織,試樣的顯微組織未見異常,組織均勻,裂紋沿晶擴(kuò)展,擴(kuò)展過程中裂紋出現(xiàn)樹枝狀分叉。
1.4 硬度測試
在斷口附近垂直鋼絲軸向的截面取樣,對試樣進(jìn)行硬度測試,測試結(jié)果的平均值為50.4 HRC,滿足標(biāo)準(zhǔn)要求(≥47 HRC)。
1.5 掃描電鏡(SEM)及能譜分析
起裂部位斷口SEM形貌如圖3所示。由圖3可知:斷口可見收斂于邊緣的裂紋擴(kuò)展棱線,未見明顯缺陷,斷口呈沿晶斷裂形貌,有二次裂紋,沿晶面上有較多的微觀顆粒相,少部分晶面呈雞爪痕特征,斷口無腐蝕形貌。
彈簧斷口中部的SEM形貌如圖4所示。由圖4可知:斷口Ⅰ區(qū)為沿晶斷裂區(qū),微觀形貌與起裂區(qū)附近基本一致,Ⅰ區(qū)和Ⅱ區(qū)之間沒有明顯的過渡區(qū),無腐蝕等其他特征;Ⅱ區(qū)為韌窩斷裂區(qū),斷口邊緣有剪切唇,為終斷區(qū)。
斷口的能譜分析位置如圖5所示,分析結(jié)果如表3所示。由表3可知:斷口Ⅰ區(qū)和Ⅱ區(qū)的化學(xué)成分基本一致。
分析位置 | 質(zhì)量分?jǐn)?shù) | ||||
---|---|---|---|---|---|
Ti | Cr | Fe | Ni | Mo | |
1 | 1.37 | 11.80 | 75.89 | 9.96 | 0.98 |
2 | 1.68 | 11.96 | 75.62 | 9.86 | 0.88 |
2. 綜合分析
由上述理化檢驗(yàn)結(jié)果可知:彈簧宏觀斷口粗糙,有明顯的顏色分區(qū),裂紋起裂于Ⅰ區(qū)彈簧表面,終斷于Ⅱ區(qū)彈簧表面。斷口Ⅰ區(qū)有裂紋擴(kuò)展棱線,呈線源特征,裂紋源區(qū)未發(fā)現(xiàn)材料缺陷,微觀斷口呈沿晶斷裂形貌,為脆性開裂。斷口Ⅱ區(qū)呈韌窩斷裂形貌,終斷區(qū)有明顯的剪切唇形貌,為韌性過載斷裂。
斷口Ⅰ區(qū)和Ⅱ區(qū)的形貌特征存在差異,說明斷口Ⅰ區(qū)和Ⅱ區(qū)的斷裂機(jī)制不同。Ⅰ區(qū)裂紋較長,沿晶擴(kuò)展,在擴(kuò)展過程中出現(xiàn)明顯的分叉,裂紋頭部尖銳,斷口可見雞爪痕形貌特征,并無腐蝕形貌,Ⅰ區(qū)斷口符合氫致開裂特征。Ⅱ區(qū)是裂紋在Ⅰ區(qū)的基礎(chǔ)上擴(kuò)展形成的,裂紋擴(kuò)展過程中,彈簧承受載荷的實(shí)際截面積不斷減小,且裂紋前沿存在應(yīng)力集中,當(dāng)應(yīng)力超過彈簧的強(qiáng)度極限后,彈簧會(huì)發(fā)生過載斷裂。
組織不均勻、成分偏析等情況均會(huì)導(dǎo)致材料在服役環(huán)境中發(fā)生斷裂。該彈簧表面無脫碳現(xiàn)象,彈簧的組織、化學(xué)成分未見異常,說明該彈簧的組織均勻、無合金元素偏析現(xiàn)象。Ⅰ區(qū)和Ⅱ區(qū)的化學(xué)成分基本一致、斷口銜接自然、無腐蝕等特征。說明該彈簧的強(qiáng)度、組織和化學(xué)成分不是導(dǎo)致彈簧Ⅰ區(qū)發(fā)生脆性開裂的主要原因,該彈簧可能在生產(chǎn)或使用過程中存在滲氫現(xiàn)象。
彈簧經(jīng)表面鈍化處理后,材料中可檢測出少量的氫元素。經(jīng)190 ℃,24 h除氫處理后,氫元素含量去除率約為23%,氫元素含量有所降低,但材料中仍殘留了一定量的氫元素。鈍化處理后,去除表層和未去除表層試樣的氫元素含量測試結(jié)果相差不大;除氫處理后,去除表層和未去除表層試樣的氫元素含量測試結(jié)果相差較大。說明除氫過程中,材料內(nèi)部的氫元素向外擴(kuò)散,除氫后,殘余的氫元素主要富集在材料表層。
彈簧在使用過程中一直處于受力狀態(tài),彈簧內(nèi)側(cè)鋼絲表面受到的應(yīng)力較大,氫元素在應(yīng)力作用下向高應(yīng)力處聚集[8-10]。氫元素不斷富集在內(nèi)側(cè)表層的晶界和晶界上第二相處,使晶界脆化,在應(yīng)力作用下,彈簧內(nèi)側(cè)表面萌生氫致脆性微裂紋。彈簧內(nèi)部殘留了少量的氫元素,且微裂紋尖端存在應(yīng)力集中,當(dāng)裂紋尖端的應(yīng)力強(qiáng)度超過氫脆起裂臨界值時(shí),微裂紋進(jìn)一步沿晶脆性擴(kuò)展。裂紋越深,裂紋尖端對應(yīng)力變化越敏感,當(dāng)氫致裂紋擴(kuò)展到一定深度后,彈簧工作應(yīng)力瞬時(shí)變大,從而導(dǎo)致剩余截面發(fā)生過載斷裂。
3. 結(jié)論及建議
超高強(qiáng)度馬氏體沉淀硬化不銹鋼彈簧在鈍化過程中存在滲氫現(xiàn)象,在應(yīng)力作用下,彈簧內(nèi)側(cè)萌生氫致脆性微裂紋,裂紋不斷擴(kuò)展,最終導(dǎo)致彈簧發(fā)生過載斷裂。
建議適當(dāng)提高除氫熱處理的溫度,并延長除氫時(shí)間,進(jìn)一步去除材料中的氫元素。采用適當(dāng)?shù)臒崽幚砉に?降低材料的氫脆敏感性。
文章來源——金屬世界